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SUMMARY 

A numerical method to obtain the neutral curve for the onset of acoustic oscillations in a helium-filled tube is 
described. Such oscillations can cause a serious heat loss in the plumbing associated with liquid helium 
dewars. The problem is modelled by a second-order, ordinary differential eigenvalue problem for the pressure 
perturbation. The numerical method to find the eigenvalues and track the resulting points along the neutral 
curve is tailored to this problem. The results show that a tube with a uniform temperature gradient along it is 
much more stable than one where the temperature suddenly jumps from the cold to the hot value in the middle 
of the tube. 
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INTRODUCTION 

A long tube filled with helium which has an open end at a very low temperature and a closed end at 
room temperature may develop a spontaneous acoustic oscillation. The oscillation results from the 
temperature difference between the ends of the tube. Such oscillations often occur in plumbing 
associated with liquid helium dewars, and the resultant heat leak can be very large. Methods exist for 
damping these oscillations when they do 0ccur.l However, predictions for their existence are often 
unreliable, since the existing model2 has an unrealistic assumption. The study of acoustic waves in 
long tubes goes back to Helmholtz in 1863. Rott, in a series of papers, developed a model for the 
helium tube instability and obtained various solutions of this model.’ Most of these solutions were 
obtained from an asymtotic expansion based on a piecewise constant mean temperature along the 
tube. In these cases the temperature is assumed to have a discontinuous jump from the cold end 
value to the hot end value at some interior point along the tube. 

The model for this problem is a second-order, ordinary differential equation for the pressure 
perturbation as a function of the distance along the tube. This equation yields an eigenvalue 
problem for the neutral stability curve. This paper describes a numerical method to solve this 
differential eigenvalue problem. A shooting method for the differential equation is used along with 
a non-linear algebraic equation solver to find the eigenvalues. Both these methods use subroutine 
packages available on many computing systems. To obtain a neutral curve by this technique, an 
accurate method to extrapolate a new point on the neutral curve from previously obtained values 
seems to be required. This is because some regions of the neutral curve require a very accurate 
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initial guess for the eigenvalue; otherwise the equation solver will not converge. The extrapolation 
method is described in some detail, since it is crucial for convergence. 

If the piecewise constant temperature profile is used, then an analytic solution of the differential 
equation can be obtained. Then the differential eigenvalue problem reduces to an algebraic 
equation. This is the equation which Rott solved by an asymptotic approximation. A direct 
solution of this problem, which uses the same algebraic equation solver and the same extrapolation 
as used for the differential equation, is described. 

This direct solution for the step function temperature agrees very well with Rott’s solution. In 
addition, solutions for several smoothly varying temperature profiles were obtained. As these 
smooth curves become steeper and approach the step function, the associated neutral curves 
converge to that for the step function. 

THE MATHEMATICAL MODEL 

The model is developed in a paper by Rott.2 It is based on the Navier-Stokes equations, for a 
viscous, conducting fluid in a cylindrical tube whose radius is assumed to be much smaller than its 
length. The equations are linearized about a mean state and a harmonic time variation, eiW‘, 
is assumed. The model is based on the Navier-Stokes equations for viscous flow in a cylinder. 
It assumes no angular dependence and also assumes that the pressure of the gas is independent 
of the radius. The radial dependence can be eliminated from the model by solving a differential 
equation in the radial direction. The result is a differential equation in the axial, or x ,  direction 
which involves Bessel functions from the solution in the radial direction. 

It is the following differential equation for the complex pressure amplitude p ( x )  along the 
tube, 0 Q x < L. It is equation (19) in Rott’s2 paper. The cold end is at x = 0. 

A(x)p” + B(x)p’ + C ( x ) p  = 0. (1) 
The boundary conditions are 

p(0) = 0, p’(L) = 0. 

The coefficient functions are 

4 4  = m2c1 - f ( x ) l / w 2 ,  

B ( x )  = a(x)’ [ f ( x )  - f * ( x ) ]  O/(o”l - a)) + [a(x)21’/mz 

C(X) = 1 + (Y - l ) f * ( X ) ,  

f ( x )  = 25, (z)/zJo(z),  

- a(X)2j -yX) /m2 - a ( X ) 2 e f ( x ) / m 2 ,  

f * ( x )  = 2J , ( Joz ) / JazJo ( z ) ,  
z = i3/’ Y,[Tm(0) /Tm(x)] ( l  + f l ) / ’ ,  

0 = T m  ( x ) /  Tm (x) > 

y, = [ o / v ( 0 ) ] ” 2 r o .  

Here J,(z) and J,(z)  denote the Bessel functions of order zero and one, a ( x )  is the sound speed, 
T,(x) is the temperature profile, v(0)  is the kinematic viscosity at the cold temperature and ro 
is the tube radius. A more complete description of these parameters is given in Appendix 1. 

The differential equation (1) can be written as a system of four real first-order equations whose 
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unknown functions are 

U,(X) = Re CPWl, U’(X) = Im L-P(X)l, U 3 ( 4  = Re CP’(X)l, U,(X) = Im CP’(X)l. 
This is an eigenvalue problem. For a fixed mean temperature the parameters w and r, must 
be chosen so that a non-trivial solution of equations (1) and (2) is possible. The solution is 
obtained by a shooting method. The arbitrary complex multiplier in the solution p(x)  is eliminated 
by the requirement that p’(0) = 1 or U3(0) = 1, U,(O) = 0. The boundary condition at x = 0 gives 
U,(O) = U,(O) = 0, and therefore a full set of initial conditions for the integration of (1) is obtained. 
Then the parameters w and must be chosen so that the boundary condition at x = L is 
satisfied; that is, U 3 ( L )  = U,(L) = 0. This can be regarded as a system of two equations in two 
unknowns; namely, 

U3(L, w, y,) = 0, U,(L, 0, y,) = 0. ( 3 )  
To obtain a neutral curve, the solution for (w, K )  must be obtained for a family of temperature 

functions. This family is parametrized by the ratio of the temperatures at the hot and cold ends; that 
is, a = TM(L)/Tm(0). Then Tm = T,(x,a), where Tm(L,a)/Tm(O, a) = a. The result depends on the 
shape of the curve as well as the ratio a. The family of temperature functions is described in 
Appendix I. The stability region for the oscillation is then determined by the function x ( a )  or 
w(a). These are the values which give neutral stability (that is, the wave number o is real) for a fixed 
a. The stability curve also depends on the shape of the temperature Tm(x,a). The shape of the 
functions used in this paper depends on two additional parameters, as described in Appendix 11. 
These parameters can be chosen so that the temperature profile approaches a step function. 

The numerical solution for the step function temperature profile is essentially the same, except 
the differential equation can be solved analytically. As shown in Rott’s paper,’ the eigenvalue 
problem is obtained from an interface condition which must be satisfied at the point where the 
jump occurs in the temperature. Using the notation from Rott’s paper, this condition is 

Gc Gn 

k C  k n  
-cot(kj)=-tan[k,(L -j)], (4) 

where the jump occurs at x = j and the remaining variables are defined below: 

G(x) = s1(x)E(x), 

s1(4 = 1 + (Y - l ) f * ( X ) >  

s z ( 4  = a’(1 - f ) /w’ ,  

s3(x) = w- f* )e/w’U - 4, 
0) = (sl/s2)”2 = 0“ + (Y - l)f*1/(1 - f)>’”/.. 

The subscripts c and n on G and k refer to the cold and hot end temperatures respectively. If 
the temperature function is monotone-that is, Tm > 0- then the integration used to define 
E can be transformed to an integration over T. Thus 

and En can be otained by integration between Tc and Tn. This formulation allows E(x) to be defined 
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for a piecewise constant temperature profile. This integration is performed numerically using the 
trapezoid rule. The interface condition (4) is complex; therefore there are two real equations which 
can be satisfied by the choice of the parameters o and Y,. This can be done for each fixed value of 
a(a = T,/T,) to obtain the stability curve. 

THE NUMERICAL APPROXIMATION 

To solve the differential equations ( I ) ,  a routine, DEBDF, from the National Bureau of Standards 
subroutines library (CMLIB) is used.3 This code was originally developed at the Sandia DOE 
laboratory. This is a solver intended for stiff equations. A non-stiff solver was also used and seemed 
to be somewhat less efficient. The differential equaution solver computes the functions U,(x ,  w, Y,) 
and U,(x,o,  Y,). A routine from the NAG library, COSNCF, is used to solve the system (3)., 
This routine was chosen because it does not require the values of the partial derivatives of U ,  
and U ,  with respect to o and Y,. This routine starts with an initial guess for o and Y, and 
then iterates to find a solution for the system (3). 

One of the input parameters to the differential equation solver is the error tolerance. The 
solver will attempt to integrate the equation with an estimated error less than this value. The 
experiments described here generally used a value of 1.E - 7 for this error tolerance. A similar 
error tolerance parameter must be input to the algebraic equation solver, COSNCF. Here the 
value 1.E - 4 was generally used. When the solver converged, the final values of U, and U, 
were generally around 1.E-7. When the error tolerance parameters for the DEBDF and 
COSNCF routines are decreased from 1.E - 6 and 1.E - 3 to 1.E - 8 and 1.E - 5, the relative 
change in Y, and o for a = 35.0 is 2.3E - 5 and 1.8E - 5 respectivly. This is with the exponential 
temperature dependence described in Appendix I1 with X ,  = 0.4 and X ,  = 0.6. 

Note that the stability curve is not single-valued. There may be two solutions for a single value of 
a; that is, there are two branches on the stability curve. The algebraic equation solver generally 
works well in the upper left region of the curve (see Figure 1). In this region it will converge to a 
solution even if the initial guess for (0, Y,) is rather poor. However, the initial guess has to be very 
good near the minimum of the curve, otherwise the equation solver will fail. Therefore, to obtain an 
initial guess, a quadratic extrapolation from the three previously computed values is used. For this 
purpose the stability curve is taken in log co-ordinates; that is, the curve consists of points (log a, 
log T,, log o). The curve is parametrized by distance in this three-dimensional log space. If the three 
points are 

(xi, yi, zi )  = (log M i ,  log Tc,i, log mi) ,  

then the distance parameter is defined by 
2 1/2 si+l p s i  = C(xi+1 -xi)2 + ( Y i + ,  -yi)’+ (z i+l  - z i )  I . 

Each of the co-ordinates x i ,  yi  and z i  is regarded as a function of s. Thus, to obtain an initial guess for 
the next point (x4, y,, z,) from the three previously computed values, quadratic extrapolation with 
s as the independent variable is used. Once the initial guess is obtained, then the value of a is fixed 
by log a = z, and the algebraic solver is applied for this fixed value of a using (y4 ,  z,) to determine 
the initial guess for Y, and o. 

This extrapolation requires that a step size s, - sg be selected. This step size is made to depend on 
the curvature in the (a, Y,) domain. The step size needs to be much smaller near the minimum of the 
curve in order that the initial guess be accurate enough to insure convergence of the algebraic 
solver. The curvature is approximated by K = X’X” - y’y’’, where x = log a and y = log are 
regarded as functions of s. These derivatives with respect to s are obtained by differentiation of the 
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1 

Figure 1. Neutral stability curves for temperature profiles of Figure 2 full curve, discontinuous temperature; dotted, 
(X,,X,) = (0.45,O.SS); uniform broken, (XL, X,) = (O., 1.0); long-short broken ( X , , X , )  = (- 1.42.0); medium-short 

broken, linear temperature (see ‘Numerical results’ section} 

quadratic interpolating polynomial. The step size is given by As = s4 - s3 = E / J  IK I. In most cases 
we used E = 0.04. In addition, the step size is not allowed to exceed a maximum, which was usually 
taken as As < 0.15. 

A more general and systematic method for computing stability curves or surfaces in some 
parameter has been developed by Rheinboldt and Burkardt.’ However, this method requires the 
computation of the Jacobian of the system of equation (3). This method is implemented in a 
subroutine package which is available from the Association for Computing Machinery (ACM).’ 
We attempted to apply this method to the helium tube, using a finite difference approximation of 
the Jacobian. We were unable to get the method to converge. At this point we don’t know the 
reason for the failure, but we suspect that the finite difference Jacobian may not have been accurate 
enough. 

NUMERICAL RESULTS 

The first numerical experiment was designed to check the method against the results obtained by 
Rott.6 For this comparsion a piecewise constant temperature profile (T,,,(x)) was used. The neutral 
curve for this case is the solid curve in Figure 2. This curve is in good agreement with the graph in 
Rott’s paper. Reading from the graph in Rott’s paper: we find that the minimum value of Y, on the 
stability curve is 8.1 f 0.4. Our value is 8.3. The neutral curve depends on the sound speed a(x), 
Prandtl number 0, viscosity temperature dependence parameter p, ratio of specific heats y ,  tube 
length L, temperature T,(O), temperature ratio a and dimensionless ratio x .  The sound speed was 
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Figure 2. Normalized temperature profiles, T,,,(x)/T,,,(L). Here L = 1.0m, p = 0.647, u = 0.667, y = 1.67, 
R, = 2060 J kg-' K-' 

given by a2(x) = yR, T,(x), with the constants given by y = 1.67, R ,  = 2060 J kg-' K- ', L = 1 m, 
T,(O) = 4.2 K, f l =  0.647 and (r = 0.67 (see Appendix I for the abbreviatio'ns of the units). 

The neutral curves for five temperature profiles are plotted in the (x,a) plane in Figure 1. The 
normalized temperature profiles, T,(x)/T,(L), are shown in Figure 2. The first (solid) curve is 
obtained with a piecewise constant temperature profile. As discussed in the previous section, this 
case requires a different numerical method than the next four cases, which use the exponential 
temperature profile described in Appendix 11. The second (dotted) curve is based on a smooth, but 
rapidly changing temperature profile where ( X L ,  X,) = (045 m, 0.55 m). (See Appendix I1 for the 
definition of X ,  and X,.) The neutral curve for this case is almost the same as in the piecewise 
constant case. The broken curve in the centre has ( X L ,  X,) = (0,l.Om). The curve with the long- 
short chain pattern has ( X , ,  X,) = (- l.Om, 2.0 m). The last case is based on a linear temperature 
profile T,(x) = T,(O) + x(a - 1) T,(O). The neutral curves can also be given in terms of the wave 
number o or the tube radius r o .  This is shown in Figures 3 and 4. The region of stability is clearly 
larger if the temperature gradient along the tube is more uniform. 

A plot of the real and imaginary parts of the eigenfunctions for the pressure is given in Figures 5 
and 6. The plots are taken at  a point near the minimum of the neutral curve for the piecewise 
constant (Figure 5)  and the linear (Figure 6) temperature profiles. 

As the temperature profiles became more nearly linear, there was some difficulty in starting the 
method. Unless the initial guess for the first root was within 10-30%, the root finder would fail. 
Therefore the temperature profile cannot be altered too rapidly in moving from case to case. 

The curves could not be otained for values of Y, greater than around 600 because the values of the 
Bessel functions overflowed the computer exponent range. However, these values were only needed 
to compute the ratios f(x) and f ' ( x )  and these ratios were not too large. It should be possible to 
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Figure 3. 

OMEGA 
Neutral stability in terms of wave number o 

RADIUS 
Figure 4. Neutral stability in terms of radius ro 
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Figure 5. Real (full curve) and imaginary (dotted) part of pressure perturbation for piecewise constant temperature profile 
at a = 5.9, = 9.0 

0 : 5  ' 

X 
0 

Figure 6. Real (full curve) and imaginary (dotted) part of pressure perturbation for linear temperature profile at 
ct=49, Yc=44 
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compute the functions f ( x )  and f'(x) directly rather than using library routines to compute 
the Bessel functions. This would eliminate the overflow problem. 

These computations were done on a CDC Cyber 840 computer. To find a single eigenvalue from a 
good initial guess requires about 12 s of central processor time. A neutral curve may require up to 
50 points which takes about 10min of computer time. This CDC computer can be represent 
numbers as large as 103*0. Some computers have an exponent range of 40 instead of 300. To run on 
such a computer, this algorithm would have to be modified to eliminate the exponent overflow in 
computing f (x) .  

CONCLUSION 

This paper describes a numerical method to compute the neutral curve for acoustic oscillations in a 
tube. This method allows fairly general temperature profiles for the gas contained in the tube. At 
present there are two versions of the code; one assumes a piecewise constant temperature profile, 
the other assumes a smooth (i.e., differentiable) monotone temperature profile. The present 
algorithm, assumes a Prandtl number with no temperature dependence and assumes the sound 
speed has an ideal gas dependence on temperature. 

The computational results show that a case with a uniform temperature gradient along the tube 
is more stable than a case where the temperature suddenly jumps from the cold to the hot end value. 

It should be possible to extend the algorithm to represent more accurately a nonlideal gas and 
also to allow a tube whose radius varied with the distance along it. Also, the algorithm should be 
modified so that the computations required to evaluate the function f ( x )  do not need such a large 
exponent range. 
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APPENDIX I. NOTATION AND UNITS 

Symbol 
U 

P 

Y 
V 
U 
0 
a 
1 

j 
J k  (4 
k 
L 
P 

Units* Explanation 
- T,{L) T,(O) temperature ratio 
- Parameter for viscosity temperature 

- Ratio of specific heats 
dependence, v(T) = CT('+P)i2,  p =  0.647 

m2 s-' Kinematic viscosity 
- CT = pc, /k  = Prandtl number 

T6 (x)/Tm(x) 
ms- '  Sound speed 

m Location of temperature jump 

J m - '  s - l  K-1 
m Tube length 
Pa Pressure perturbation 

- 

__ J C -  1) 

- Bessel function of order k 
Thermal conductivity in gas 

~ 

* m = metres, K = degrees Kelvin, J = Joule, s = seconds, Pa = pascals 
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m 
K 

K 
K 

m 
S K 1  

Tube radius 
Temperature at cold end of tube, 

Mean temperature function 
Temperature at hot end of tube, 

Axial distance along tube 
Wave number of oscillation 
Y, = [ o / ~ ( O ) ] ” ~ r ~  = dimensionless boundary layer parameter 

Tc = Tm(0) 

Tn = Tm(L) 

APPENDIX 11. THE TEMPERATURE PROFILE 

The mean temperature function, Tm(x), is designed to be a monotone function which increases from 
a value T, at x = 0 to a value T,, = aT, at x = L. The value T, is always taken to be the temperature 
of liquid helium at atmospheric pressure, namely 4.2 K. The function is smooth; that is, it possesses 
derivatives of all orders. The function requires, in addition to T, and a, two more parameters for its 
definition. These parameters are the end points XL and X, of the interval over which the function 
undergoes most of its increase from T, to Tn. Thus the temperature T,(XL) is only slightly greater 
than T, and Tm(XH) is only slightly less than T,,. 

Tm(x) = (ToeY + T,e-Y)/(eY + e - Y ) ,  

The definition of Tm follows: 

y = s(x - XM)? s = 4/(xH - XL), x, = (XH + xL)/2, 

To = ( P H T L - B L T H ) / ( A L P H - A H B L ) ,  

Ti =(ALTH- AHTL)/(ALPH-AHPL), 
AL=EC1/(E1 +EL1), PL=E1/(E1 + E , ’ ) ,  El =esxM 

AH=E2/(E, +EY1), pH=E;’/(E2-E;’), E,=eS(L-XM). 

1. 
2. 
3. 

4. 
5. 
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